

RM-7085-7086

B. E. III (Sem. VI) (Electronics & Communications) Examination May - 2007

Analog Integrated Circuits (AIC)

Time: 3 Hours]

[Total Marks: 100

RM-7085

Instructions:

ીં નીચે દર્શાવેલ — નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of — signs on your answer book. Name of the Examination :	Seat No.:
B. E. 3 (SEM. 6) (ELECTRONICS & COMM.) Name of the Subject:	
Analog Integrated Circuits (ALC)	(b) (i) Des
Subject Code No.: 7 0 8 5 Section No. (1, 2,): 1	Student's Signature

- (2) Attempt all questions.
- (3) Figures to the right indicate full marks.
- (4) Answers of two sections must be written in separate answer sheets.
- (5) Assume data wherever necessary.
- l (a) Write in brief :

10

- (i) Why was the name 'Operational' applied to integrated circuit differential amplifier?
- (ii) State the characteristics of ideal Op-Amp.
- (iii) What additional element must be added to convert a narrowband band pass filter to a band reject filter?
- (iv) What is wrong in the following ckt? Justify.

Claculate the output offset voltage for the ckt (v) shown below: (Take input offset voltage = 1 mV and input offset current = 20 nA

(b) Design single input balanced output differntial (i) amplifier shown in fig. 3 to meet the following specifications:

 $R_i \geq 600 \ k\Omega$

peak to peak output voltage swing $\leq 5V$

 $V_s = \pm 10 \ V$

- (ii) Enlist the 4 differential amplifier configuration. Provide D.C. analysis (operating point analysis) of any one.
- 14

5

- 2 Attempt any two:
 - (a) Show that the ckt acts as a differentiator. Also state the advantages of, this ckt.

(b) Obtain voltage gain $\frac{V_0}{V_{in}}$ as

$$\frac{V_0}{V_{in}} = -\frac{A R_F R_i}{\left(R_1 + R_i\right) \left(R + R_F\right) + R R_F + A R R_i}$$

Fig. 5

(c) List the various A/D conversion techniques. Which is the fastest ADC and why? Also explain the operation of Dual slope ADC. Write important specification of A/D converter.

3 Attempt any two:

$$\frac{V_2}{V_1} = \frac{2 S (W_0/\phi)}{S^2 + \frac{W_0}{\phi} S + W_0^2}$$

- (b) Explain operation and draw the ckt, diagram of monostable multivibrator using IC 555 and discuss its application as frequency divider and a pulse stretcher ckt.
- (c) Draw notch filter using twin T network and prove that note filter $f_N = \frac{1}{2 \pi RC}$. Also compare active filter and passive filter.

RM-7086

Instructions:

(1)

- (2) Attempt all questions.
- (3) Answers of two sections must be written in separate answebooks.
- (4) Assume suitable data wherever **necessary**.

(1) Find V_0 for the circuit shown in fig. 7 by assuming ideal Op-Amps.

(2) For the circuit shown in fig. 8, find the Op-Amp output when control input is zero and one. Assume that $R_1 = R_2 = R_3$.

- (3) For the circuit shown in fig. 9 the LED will be on if V_i is
 - (i) > 12 V (ii) < 12 V (iii) > 6 V (iv) < 6V Give the reason for your answer.

Fig. 9

- (4) What are the advantages of voltage follower circuit using Op-Amp.
- (5) Design a non-inverting adder circuit using Op-Amp.
- (b) Attempt the following:
 - (1) Give an arrangement to show how Op-Amp adder circuit could be used for multiplying two voltages.
 - (2) Draw and explain positive and negative clipper using Op-Amp.
- 5 Attempt the following:
 - (1) Explain the monostable multivibrator using Op-Amp with necessary circuit diagram and derivation.
 - (2) For a given circuit show that

$$V_0 = \left(1 + \frac{R'}{R}\right) \left(V_1 - \frac{V_2}{A_1}\right) \text{ if } \frac{A_1 A_2 R}{R + R'} >> 1$$

Fig. 10

10

16

(iii) Find the value of the resistances for the circuit shown in fig. 11, such that it acts as a full wave rectifier.

- 6 Attempt any two:
 - (1) Derive the equation for frequency of oscillation for triangular wave generator. How one can generate saw tooth wave from the same circuit.
 - (2) Explain the advantages of an instrumentation amplifier using 3 Op-Amp over conventional operational amplifier. Also derive the necessary equation of the gain for an instrumentation amplifier.
 - (3) Find V_I , V_N and V_O for the circuit shown in fig. 12.

7

14