

DM-7085-86

B. E. III (Sem. VI)

(Electrics & Communication) Examination January - 2008

ted Cirucits (AIC)

Analog Integrated Cirucits	(AIO)
	[Total Marks: 100
Time: 3 Hours] DM-7085	e wit massi through
Instructions:	No. 7 to 1 to
(1)	Seat No.:
નીચે દર્શાવેલ - નિશાનીવાળી વિગતો ઉત્તરવહી પર અવશ્ય લખવી. Fillup strictly the details of - signs on your answer book. Name of the Examination:	
B. E. 3 (Sem. 6) (Electrics & Communication)	
Name of the Subject :	
Analog Itnegrated Circuits (AIC)	
Subject Code No.: 7 0 8 5 Section No. (1, 2)	Student's Signature
all questions	
(2) Attempt all questions.	5.
(3) Figures to the right indicate full marks	in separate answer
(3) Figures to the light masses (4) Answers of two sections must be written	
sheets.	10 10 1000 1000 30/P
(5) Assume data if required was the	Stope Stope Stope
Ingelie	Dud ip such as complematory
1 (i) Give answers in brief: belonged of	wholeved of bollows fush pull amp
1 1:	onventional op amp.
Draw the block diagram of condition of the significance of curr	ent Mirror circuit.
State the significance of current of an opera	tional amplifier
(c) Why is the gain of an opera	tional ampinion
purposely made extremely la	rge ?
Define resolution and find it	s value of 8 bit DAC.
Draw and explain (in brief)	butterworth filter oresolution = 1
1/2 12/2007	55 6
response. (ii) (a) What do you mean by offset	t voltage and offset 5 = 0.39
(ii) (a) What do you mean by onse	and also explain
augment with respect to an o	p-amp and also onpre

current with respect to an op how offset null is achieved in IC 741. Also define show rate for op-amp.

DM-7085-86]

1

[Contd...

Claculate the output offset voltage for the ckt shown below:

(Take input offset voltage = 1 mV and input offset current = 20 nA

360Kr 12/1 Fig. 2

Design single input balanced output differntial amplifier shown in fig. 3 to meet the following specifications:

 $R_i \geq 600 \ k\Omega$

peak to peak output voltage swing $\leq 5V$

 $V_s = \pm 10 \ V$

Fig. 3

2

[Contd..

RM-7085-7086]

2

Enlist the 4 differential amplifier configuration.

Provide D.C. analysis (operating point analysis) of any one.

54

Attempt any two:

Show that the ckt acts as a differentiator. Also state the advantages of, this ckt.

Obtain voltage gain $\frac{V_0}{V_{in}}$ as

kt

et

2

$$\frac{V_0}{V_{in}} = -\frac{A R_F R_i}{\left(R_1 + R_i\right) \left(R + R_F\right) + R R_F + A R R_i}$$

Fig. 5

(c) List the various A/D conversion techniques. Which is the fastest ADC and why? Also explain the operation of Dual slope ADC. Write important specification of A/D converter.

RM-7085-7086]

3

[Contd..

13

For the given ckt, $R_1 = \phi R$ and $W_0 = \frac{1}{RC}$, show that

$$\frac{V_2}{V_1} = \frac{2 S (W_0 / \phi)}{S^2 + \frac{W_0}{\phi} S + W_0^2}$$

Fig. 6

Explain operation and draw the ckt, diagram of monostable multivibrator using IC 555 and discuss its application as a frequency divider and a pulse stretcher ckt.

Draw notch filter using twin T network and prove that notch filter $f_N = \frac{1}{2 \pi RC}$. Also compare active filter and passive filter.

RM-7086

Instructions:

(1)

- Attempt all questions. (2)
- Answers of two sections must be written in separate answer (3)books.
- (4)Assume suitable data wherever necessary.

4 (a) Attempt the following questions:

10

(1) Find V_0 for the circuit shown in fig. 7 by assuming ideal Op-Amps.

 $v_i' = \int v_i dt$

For the circuit shown in fig. 8, find the Op-Amp output when control input is zero and one. Assume that $R_1 = R_2 = R_3$.

Fig. 8

For the circuit shown in fig. 9 the LED will be on if V_i is

(i) > 12 V (ii) < 12 V (iii) > 6 V (iv) < 6V

Give the reason for your answer.

Fig. 9

What are the advantages of voltage follower circuit using Op-Amp.

- (5) Design a non-inverting adder circuit using Op-Amp.
- (b) Attempt the following:
 - Give an arrangement to show how Op-Amp adder circuit could be used for multiplying two voltages.
 - (2) Draw and explain positive and negative clipper using Op-Amp.
- 5 Attempt the following:

(1) Explain the monostable multivibrator using Op-Amp with necessary circuit diagram and derivation.

For a given circuit show that

$$V_0 = \left(1 + \frac{R'}{R}\right) \left(V_1 - \frac{V_2}{A_1}\right) \text{ if } \frac{A_1 A_2 R}{R + R'} >> 1$$

 $A_{2} \rightarrow \text{Open large mode}$ $V_{0} = (1 + \frac{R}{R}) (V_{1} - \frac{A_{1}}{A_{1}}) \text{ if } \frac{R + R'}{R + R'}$ $A_{1} \rightarrow \text{Open large mode}$ $V_{2}' = A_{1} (V_{1} - V_{1}')$ $V_{2}' = A_{1} (V_{1} - \frac{R}{R + R'}) \text{ if } \frac{A_{1}}{R + R'}$ $V_{2}' = A_{1} (V_{1} - \frac{R}{R + R'}) \text{ if } \frac{A_{2}}{R + R'}$

$$V_0 = A_2 \left(V_2 - A_1 M_1 7085 + A_2 R_1 V_0 \right)$$

 $V_0 \left(1 - A_2 R_1 \right) = A_2 V_2 - A_2 A_1 V_1$

Fig. 10 $V_0 = \left(\frac{R+R'}{R}\right) \left(\frac{V_1 - V_2}{R}\right) = \left(\frac{1+R'}{R}\right)$

10

16

 $V_0\left(1-\frac{A_1A_2R}{R_1R'}\right)=A_1A_2\left(V_1-\frac{V_2}{A_1}\right)$

Find the value of the resistances for the circuit shown in fig. 11, such that it acts as a full wave rectifier.

- 6 Attempt any two:
 - (1) Derive the equation for frequency of oscillation for triangular wave generator. How one can generate saw tooth wave from the same circuit.
 - (2) Explain the advantages of an instrumentation amplifier using 3 Op-Amp over conventional operational amplifier.

 Also derive the necessary equation of the gain for an instrumentation amplifier.
 - (3) Find V_I , V_N and V_O for the circuit shown in fig. 12.

RM-7085-7086]

7

[500]

